Further development and validation of IDS by means of selected experiments

Peter Presoly, Christian Bernhard, Nora Fuchs, Jyrki Miettinen, Seppo Louhenkilpi, Jukka Laine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

58 Downloads (Pure)

Abstract

Microsegregation and material property calculations are the basis for solidification calculations which are essential to understand the continuous casting process. The program IDS (InterDendritic Solidification) is a thermodynamic-kinetic-empirical tool for solidification, microstructure and material properties of steels, which has been developed at Aalto University in Finland since 1984. The heart of the model is the large thermodynamic, diffusion and microstructure data bank made through own assessment work. Particularly, the thermodynamic database of IDS has been clearly extended during the last years.
The quality of the calculations depends significantly on the underlying thermodynamic data. A cooperation has been carried out with the Montanuniversitaet Leoben to further development and validate the IDS databases. A special research field at the Chair of Ferrous Metallurgy in Leoben are high-temperature experiments to investigate the transformation and casting behaviour in the lab, e.g. to identify peritectic steel grades. A portfolio of different laboratory experiments will be presented to validate the calculation results and to further develop the program IDS. A highlight of this work was the optimisation of the silicon and manganese interaction in Fe-C-Si-Mn system based on systematic DSC measurements.
Original languageEnglish
Title of host publicationProceedings of 9th ECCC European Continuous Casting Conference - ECCC2017
Place of PublicationVienna
PublisherASMET
Publication statusPublished - 27 Jun 2017

Keywords

  • Interdendritic solidification, CALPHAD, microsegregation, phase diagram, DTA / DSC, HT-LSCM, dipping test

Cite this