Abstract
The long-term stability of thermally conductive high-density polyethylene (HDPE)-based compounds as phase-change material (PCM) is investigated. For this purpose, the HDPE’s thermal conductivity (TC) is first enhanced via compounding two different filler types (expanded graphite and aluminum) into the polymeric matrix. Bulky specimens of these compounds are then stored in air for up to 7289 h in the melt state to investigate the compounds’ long-term stability as PCM. Their thermo-oxidative/thermal stability and their ability to maintain the isotropic material character (homogeneous distribution of the incorporated particles) is investigated. The compounds’ degradation behavior is monitored via Fourier-transform infrared spectroscopy (FTIR) and the maintenance of the homogeneous filler distribution is examined via a combined Differential Scanning Calorimetry (DSC)/Thermal Gravimetric Analysis (TGA) mapping of each exposed specimen. The storage capacity decreases minimally after 7289 h of exposure. Furthermore, the incorporated filler particles enhance the thermo-oxidative stability of HDPE as PCM. Consequently, thermally conductive HDPE is a highly interesting PCM.
Originalsprache | Englisch |
---|---|
Aufsatznummer | 48269 |
Seitenumfang | 10 |
Fachzeitschrift | Journal of Applied Polymer Science |
Jahrgang | 137.2020 |
Ausgabenummer | 2 |
DOIs | |
Publikationsstatus | Veröffentlicht - 12 Juli 2019 |
Bibliographische Notiz
Funding Information:This research project is funded by Klima- und Energiefonds (Austrian Climate and Energy Funds) and carried out within the framework of the program ?Energieforschung.? The Austrian Research Promotion Agency (FFG) is gratefully acknowledged for funding this work under grant no. 848914 (StoreITup-IF). Special thanks go to Borealis GmbH, SGL Carbon SE, and Benda-Lutz GmbH who generously provided the polymer and the fillers and to Alexander Eder for the compounding of the materials. Further thanks go to Anton Paar GmbH for the utilization of the rheometer and to Alexander Kroiss for the technical support.
Publisher Copyright:
© 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc.