Martingale solutions of Nematic Liquid Crystals driven by Pure Jump Noise in the Marcus Canonical Form

Akash Panda, Utpal Manna, Zdzislaw Brzezniak

Publikation: Beitrag in FachzeitschriftArtikelForschungBegutachtung

9 Zitate (Scopus)


In this work we consider a stochastic evolution equation which describes the system governing the nematic liquid crystals driven by a pure jump noise in the Marcus canonical form. The existence of a martingale solution is proved for both 2D and 3D cases. The construction of the solution relies on a modified Faedo–Galerkin method based on the Littlewood–Paley-decomposition, compactness method and the Jakubowski version of the Skorokhod representation theorem for non-metric spaces. We prove that in the 2-D case the martingale solution is pathwise unique and hence deduce the existence of a strong solution.
Seiten (von - bis)6204--6283
Fachzeitschrift Journal of differential equations
PublikationsstatusVeröffentlicht - 5 Mai 2019

Dieses zitieren