TY - JOUR
T1 - Crystallographic orientation dependent maximum layer thickness of cubic AlN in CrN / AlN multilayers
AU - Chen, Zhuo
AU - Holec, David
AU - Bartosik, Matthias
AU - Mayrhofer, Paul Heinz
AU - Zhang, Zaoli
PY - 2019
Y1 - 2019
N2 - Metastable rock-salt (face centered cubic, c-) AlN can be grown in CrN/AlN multilayers when the AlN layer is thin enough. Exceeding a certain critical thickness, the thermodynamically stable wurtzite (w) structure grows. In this work, a bilayer-period-gradient (21 repeated blocks, each consisting of 10 bilayers with AlN layer-thicknesses ranging from 1.0 nm to 10.0 nm), ∼2.0 μm-thick, reactively magnetron sputtered multilayer was characterized in detail with a spherical aberration-corrected transmission electron microscope (TEM). The studies are complemented by DFT (density functional theory) calculations. The high resolution TEM (HRTEM) studies reveal that the <111> growth-orientation is not as effective as the <110> and <100> growth-orientations in stabilizing the metastable c-AlN. The critical thickness for the c-AlN layers (before the thermodynamically stable w-AlN forms) is around ∼2.0 nm for the <111> growth-orientation but reaches as high as 4.1 nm for both <110> and <100> growth-orientations. Contrary to the <111> orientation, in both <110> and <100> orientations several unusually highly mismatched c-CrN/w-AlN interface structures form as soon as w-AlN is present. DFT studies suggest that the larger critical thickness of the AlN layers in <100> and <110> orientation is allowed by the lower surface energy and higher cubic/wurtzite interfacial energy. The combination of HRTEM and DFT studies allows answering open questions on the impact of crystallographic orientations and interface structures, and also provides a better understanding on the growth mechanisms of c-AlN, necessary for the outstanding mechanical properties of AlN-containing multilayers.
AB - Metastable rock-salt (face centered cubic, c-) AlN can be grown in CrN/AlN multilayers when the AlN layer is thin enough. Exceeding a certain critical thickness, the thermodynamically stable wurtzite (w) structure grows. In this work, a bilayer-period-gradient (21 repeated blocks, each consisting of 10 bilayers with AlN layer-thicknesses ranging from 1.0 nm to 10.0 nm), ∼2.0 μm-thick, reactively magnetron sputtered multilayer was characterized in detail with a spherical aberration-corrected transmission electron microscope (TEM). The studies are complemented by DFT (density functional theory) calculations. The high resolution TEM (HRTEM) studies reveal that the <111> growth-orientation is not as effective as the <110> and <100> growth-orientations in stabilizing the metastable c-AlN. The critical thickness for the c-AlN layers (before the thermodynamically stable w-AlN forms) is around ∼2.0 nm for the <111> growth-orientation but reaches as high as 4.1 nm for both <110> and <100> growth-orientations. Contrary to the <111> orientation, in both <110> and <100> orientations several unusually highly mismatched c-CrN/w-AlN interface structures form as soon as w-AlN is present. DFT studies suggest that the larger critical thickness of the AlN layers in <100> and <110> orientation is allowed by the lower surface energy and higher cubic/wurtzite interfacial energy. The combination of HRTEM and DFT studies allows answering open questions on the impact of crystallographic orientations and interface structures, and also provides a better understanding on the growth mechanisms of c-AlN, necessary for the outstanding mechanical properties of AlN-containing multilayers.
UR - http://www.scopus.com/inward/record.url?scp=85061835476&partnerID=8YFLogxK
U2 - 10.1016/j.actamat.2019.02.004
DO - 10.1016/j.actamat.2019.02.004
M3 - Article
SN - 1359-6454
VL - 168.2019
SP - 190
EP - 202
JO - Acta materialia
JF - Acta materialia
IS - 15 April
ER -